
UCRL-MA-147996

SLURM: Simple Linux
Utility for Resource
Management

M. Jet te , C. Dunlap, J. Garlick, and M. Grondona

April 24,2002

US. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

SLURM: Simple Linux Utility for Resource
Management

Moe Jette, Chris Dunlap, Jim Garlick, Mark Grondona
{jette,cdunlap,garlick,grondona)@llnl.gov

April 24, 2002

Abstract
Simple Linux Utility for Resource Management (SLURM) is an open

source, fault-tolerant, and highly scalable cluster management and job
scheduling system for Linux clusters of thousands of nodes. Compo-
nents include machine status, partition management, job management,
and scheduling modules. The design also includes a scalable, general-
purpose communication inhstructure. Development will take place in
four phases: Phase I results in a solid infrastructure; Phase 11 produces
a functional but limited interactive job initiation capability without use
of the interconnect/switch; Phase I11 provides switch support and docu-
mentation; Phase IV provides job status, fault-tolerance, and job queuing
and control through Livermore’s Distributed Production Control System
(DPCS), a meta-batch and resource management system.

1

mailto:jette,cdunlap,garlick,grondona)@llnl.gov

1 Overview
SLURMI (Simple Linux Utility for Resource Management) is a resource man-
agement system suitable for use on Linux clusters, large and small. After
surveying[l] resource managers available for Linux and finding none that were
simple, highly scalable, and portable to different cluster architectures and in-
terconnects, the authors set out to design a new system.

The result is a resource management system with the following general char-
acteristics:

0 Simplicity: SLURM is simple enough to allow motivated end users to
understand its source code and add functionality. The authors will avoid
the temptation to add features unless they are of general appeal.

source code is distributed under the GNU General Public License.
0 Open Source: S L U M is available to everyone and will remain free; its

0 Portability: SLURM is written in the C language, with a GNU autoconf
configuration engine. While initially written for Linux, other UNIX-like
operating systems should be easy porting targets.

0 Interconnect independence: Initially, S L U M supports UDP/IP based
communication and the Quadrics Elan3 interconnect. Adding support
for other interconnects is straightforward. Users select the supported in-
terconnects at compile time via GNU autoconf.

0 Scalability: SLURM is designed for scalability to clusters of thousands
of nodes. Prototypes of SLURM components thus far developed indicate
that the controller for a cluster with 16k nodes will occupy less than 1 MB
of memory and performance will be excellent.2

0 Fault tolerance: SLURM can handle a variety of failure modes without
terminating workloads, including crashes of the node running the SLURM
controller.

0 Secure: SLURM employs crypto technology to authenticate users to ser-
vices and services to services. A Kerberos v5 infrastructure can be utilized
if available. SLURM does not assume that its networks are physically
secure, but does assume that the entire cluster is within a single adminis-
trative domain with a common user base across the entire cluster.

0 System administrator friendly: SLURM is configured with a few simple
configuration files and minimizes distributed state. Its interfaces are us-
able by scripts and its behavior is highly deterministic.

l A tip of the hat to Matt Groening and creators of Futumrna, where Slurm is the highly

31t is anticipated that a Linux cluster of size > 1000 nodes will be available for testing
addictive soda-like beverage made from worm excrement.

before the initial public release.

2

1.1 What is SLURM?
As a cluster resource manager, SLURM has three key functions. First, it al-
locates exclusive and/or non-exclusive access to resources (compute nodes) to
users for some duration of time so they can perform work. Second, it provides
a framework for starting, executing, and monitoring work (normally a parallel
job) on the set of allocated nodes. Finally, it arbitrates conflicting requests for
resources by managing a queue of pending work.

Users interact with SLURM through three command line utilities: srun
for submitting a job for execution and optionally controlling it interactively;
scancel for early termination of a job; and squeue for monitoring job queues
and basic system state.

System administrators perform privileged operations through an additional
command line utility: scontrol.

External schedulers and meta-batch systems can submit jobs to SLURM and
order its queues through an application programming interface (API).

Compute nodes simply run a slurmd daemon (similar to a remote shell dae-
mon) to export control to SLURM. The central controller daemon, slurmctld,
maintains the global state and directs operations.

1.2 What SLURM is Not
SLURM is not a sophisticated batch system. Its default scheduler implements
First-In First-Out (FIFO) with backfill and is not intended to directly implement
complex site policy. SLURM does however provide a sufficiently sophisticated
API for an external scheduler or meta-batch system to order its queues based
upon site policy.

SLURM clusters are space shared, and parallel jobs are always assigned
whole nodes. Multiple jobs may be allocated the same node(s) if the admin-
istrator has configured nodes for shared access and/or the job has requested
shared resources for improved responsiveness. SLURM does not support gang
scheduling (time-slicing of parallel jobs). However, the explicit preemption and
later resumption of a job under the direction of an external scheduler may be
supported in the future. At present, an external scheduler may terminate jobs,
hold jobs, and requeue them in any desired order order via the API.

SLURM is not a meta-batch system like Globus or DPCS (Distributed Pro-
duction Control System). SLURM supports resource management across a sin-
gle cluster.

SLURM is not a comprehensive cluster administration or monitoring pack-
age. While SLURM knows the state of its compute nodes, it makes no attempt
to put this information to use in other ways, such as with a general purpose event
logging mechanism or a back-end database for recording historical state. It is
expected that SLURM will be deployed in a cluster with other tools performing
these functions.

3

1.3 Architecture

slurmd slurmd

Figure 1: SLURM Architecture

As depicted in Figure 1, SLURM consists of a slurmd daemon running on
each compute node, a central slurmctld daemon running on a management
node (with optional failover twin), and a four command line utilities: srun,
scancel, squeue, and scontrol, which can run anywhere in the cluster. A
scalable communications library ties these components together.

Figure 2 exposes the subsystems that are implemented within the slurmd
and slurmctld daemons. These subsystems are explained in more detail below.

1.3.1 Slurmd

The slurmd running on each compute node can be compared to a remote shell
daemon: it waits for work, executes the work, returns status, then waits for
more work. It also asynchronously exchanges node and job status with the
controller. It never communicates with other compute nodes and the only job
information it has at any given time pertains to the currently executing job.

slurmd reads its configuration from a file: /etc/slurmd. conf and has three
major components:

e Machine and Job Status Service: Respond to controller requests for ma-
chine and job state information, and send asynchronous reports of some
state changes (e.g. slurmd startup, job termination) to the controller.
Job status includes CPU and real-memory consumption information for
all processes including user processes, system daemons, and the kernel.

e Process Manager: Start, monitor, signal, and clean up after a set of pro-
cesses belonging to a parallel job, as dictated by the controller. Starting
a process may include executing a prolog script, setting process limits,
setting real and effective user id, setting environment variables, setting
current working directory, allocating interconnect resources, setting core
paths, and managing process groups. Terminating a process may include
terminating all members of a process group and executing an epilog script.

4

IGlobus and/or
Meta-scheduler
(oplional)

q User: srun

Figure 2: SLURM Architecture - Subsystems

¯ Stream Copy Service: Allow stderr/stdout/stdin and core files to be copied
in and out of the spool directory for a job. In the case of batch jobs, this
will happen during startup and cleanup only and will occur between the

controller and slurrad’s. In the case of interactive jobs, stdout/stderr
may additionally be "carbon copied" to the srun command during job
execution.

1.3.2. Controller

Most SLURM state information exists in the controller, slurmctld. When
slurmctld starts, it reads its configuration from a file: /etc/slurractld. conf.
It also can read additional state information from a checkpoint file left by from

a previous slurmct].d, slurmctld runs in either master or standby mode, de-
pending on the state of its failover twin, if any.

slurmctld performs several tasks simultaneously:

¯ Partition Manager:. Monitors the state of each node in the cluster. It polls
slurmd’S for status periodically and receives state change notifications

from slurmd’s asynchronously. The partition manager groups nodes into
non-overlapping sets called partitions. Each partition can have associated
with it various job limits and access controls. The partition manager also
allocates nodes to jobs based upon node and partition states and configu-
rations. Requests to initiate jobs come from the Job Manager. scontrol
may be used to administratively alter node and partition configurations.

Job Manager: Accepts user job requests and (if applicable) places pending
jobs in a priority ordered queue. By default the job priority will be a simple
age based algorithm providing FIFO ordering. An interface is provided
for an external scheduler to establish a job’s initial priority and API’s are
available to alter this priority through time for customers wishing a more
sophisticated scheduling algorithm. The job manager is awakened on a
periodical basis and whenever there is a change in state that might permit
a job to begin running, such as job completion, job submission, partition
up transition, node up transition, etc. The job manager then makes a
pass through the job queue and starts jobs until a resource allocation fails.
When a resource allocation failure occurs, the Job Manager establishes a
time when the job might be expected to begin execution. Lower priority
jobs in the queue will be allocated resources on that partition only if they
will complete prior to the expected initiation time of the higher priority job
(backfill scheduling) or utilize resources not required by a higher priority
job (e.g. another partition or less capable nodes). After completing the
scheduling cycle, the job manager’s scheduling thread sleeps. Once a job
has been allocated resources, the job manager transfers necessary state
information to those nodes and commences its execution. Once executing,
the job manager will monitor and record the job’s resource consumption
(CPU time used, CPU time allocated, and real memory used) in near real-
time. When the job manager detects that all nodes associated with a job
have completed their work, it initiates cleanup and performs a scheduling
cycle as described above.

Switch Manager: Monitors the state of interconnect links and informs the
partition manager of any compute nodes whose links have failed. The
switch manager can be configured to use Simple Network Monitoring Pro-
tocol (SNMP) to obtain link information from SNMP-capable network
hardware. The switch manager configuration is optional; without one,
SLURM simply ignores link errors.

1.3.3 Command Line Utilities

The command line utilities primarily interact with the controller. The utilities
find the host:port of the controller by reading a configuration file: /atc/slurm. conf.
They authenticate to the controller using a method selected at compile time,
initially either Kerberos v5 or ... ?

6

scancel: Cancel a running or a waiting job, subject to authentication.
This command can also be used to sent an arbitrary signal to all processes
associated with a job on all nodes.

scontrol: Perform privileged administrative commands such as draining
a node or partition in preparation for maintenance. It must be run as the
user root.

0 squeue: Display the queue of running and waiting jobs. squeue can also
display a summary of partition and node information.

srun: Submit a job for execution. srun may run in either interactive
or batch mode. srun’s standard input (if it is a file) is copied to the
controller, which copies it to slurmd’s3 After job submission, batch srun
terminates, while interactive srun establishes connections with slurmd’s
to get standard output and error of the tasks in real time, and responds
to signals from the user.4

1.3.4 Communications Layer

SLURM uses the LLNL developed communications library known as Mongo5.
Mongo’s API closely resembles Berkeley sockets. It is built upon the UDP pro-
tocol with algorithms providing better performance than TCP, particularly in
the event of high network congestion or a high failure rate in message transmis-
sion.

Need more details here.

1.3.5 Security

SLURM has a simple security model: Any user of the cluster may submit par-
allel jobs to execute and cancel his own jobs. Any user may view all SLURM
configuration and state information. Only the user root may modify SLURM
configuration or cancel any job. If permission to modify SLURM configura-
tion without a root account is required, set-uid programs may be used to grant
specific permissions to specific users.

Slurmctld requires some means of insuring that a request to initiate or
cancel a job for some user was in fact initiated by that user....

Need more details here.
Access to some partitions is restricted via a key. This may be used, for

example, to provide specific external schedulers with exclusive access to parti-
tions. Individual users will not be permitted to directly submit jobs to such a

3 a ~ command line options select the stdin handling method such as broadcast to all
tasks, or send only to task 0.

‘From the controller’s point of view there is no difference between batch and interactive
jobs; an interactive a r m may detach from its job, leaving it to continue running as though
submitted in batch mode. It is also possible for a m to attach to a job interactively that was
submitted in batch mode, subject to authentication.

SIdentify location of Mongo documentation here

7

partition, which would prevent the external scheduler from effectively manag-
ing it. This key will be generated by WHAT and provided to user root upon
demand. The external scheduler, which must run as user root to submit jobs
on the behalf of other users, will submit jobs using this key.

1.4 Example: Executing a Batch Job
A user wishes to run a job in batch mode, in which srun will return immediately
and the job will execute “in the background” when resources are available.

The job is a two-node run of mping, a simple MPI application. The user
submits the job:

srun --batch --nodes 2 --nprocs 2 I mping 1 1048576

The srun command authenticates the user to the controller and submits the
job request. As stdin is not a file, it is not copied to the controller. The request
includes the srun environment, current working directory, and command line
option information.

The controller consults the partition manager to test whether the job will
will ever be able to run. If the user has requested a non-existent partition, more
nodes than are configured in the partition, a non-existent constraint, etc., the
partition manager returns an error and the request is discarded. The failure is
reported to srun which informs the user and exits:

srun: request will never run

On successful submission, the controller assigns the job a unique slum id,
adds it to the job queue and returns the slurm id to srun, which reports this to
user and exits, returning success to the user’s shell:

srun: tinymem-42

The controller awakens the job manager which tries to run jobs starting at
the head of the job queue. It finds tinymem-42 and makes a successful request to
the partition manager to allocate two nodes from the tinymem partition: dew6
and dev7.

The job manager sends a copy of the environment, current working directory,
command path, command arguments, interconnect info, etc. to the slurmdk
running on dew6 and dev7. The slurmd’s establish the environment and execute
the command as the submitting user. Stdout and stderr are redirected to files
on the compute nodes:

/var/spool/slurm/tinymem-42/stdout.[mpirankl
/var/ spo o 1/ s lurm/t inymem-42/st derr . [mpir ank]

The job manager continues trying to initiate jobs until it cannot, then sleeps.
Meanwhile, on dev6, /var/spool/slurm/tinymem-42/stdout. 0 accumulates
the application’s output:

8

I pinged 0: 1 bytes 5.38 uSec 0.19 MB/s
1 pinged 0: 2 bytes 5.32 uSec 0.38 MB/s
1 pinged 0: 4 bytes 5.27 uSec 0.76 MB/s
I pinged 0: 8 bytes 5.39 uSec 1.48 MB/s

I pinged 0: 1048576 bytes 4682.97 uSec 223.91 MB/s
...

When all tasks complete, the slurmd’s on the two compute nodes notify
the job manager, which changes the job status to stage-out and begins cleanup.
It retrieves the stdout/stderr spool files from the stream copy service of each
slurmd and merges them into a single report, which it stores in the user’s srun
directory. It directs the slurmd daemon on each of the nodes formerly assigned
to the job to execute the epilog commands (if any). Finally, the job manager
releases resources and changes the job’s state to complete. The records of a job’s
existence will eventually be purged.

1.5
A user wishes to run the same job in interactive mode, in which srun will
block while the job executes and stdout/stderr of the job will be copied onto
stdout/stderr of srun.

srun --nodes 2 --nprocs 2 1 mping I 1048576
The srun command authenticates the user to the controller and executes

the same steps described in the batch example, except srun does not terminate
upon successful submission. Instead, it receives a list of hostnames and a nonce
used to authenticate to the slurmd’s. After the job startup, srun has no further
interaction with the controller.

srun then opens connections to the slurmd’s and copies stdout/stderr of
each task to stdout/stderr of srun. These streams are also spooled on the
node and will be collected, merged, and stored in the user’s srun directory on
completion.

Example: Executing an Interactive Job

The user submits the job, this time requesting an interactive run:

The user sees the output of task 0 on stdout of srun:

1 pinged 0: 1 bytes 5.38 uSec 0.19 MB/s
1 pinged 0: 2 bytes 5.32 uSec 0.38 MB/s
1 pinged 0: 4 bytes 5.27 uSec 0.76 MB/s
I pinged 0: 8 bytes 5.39 uSec 1.48 MB/s

1 pinged 0: 1048576 bytes 4682.97 uSec 223.91 MB/s
...

When the job terminates, srun receives an EOF on each stream and closes
them, gets the job exit status from slurmd’s, and terminates.

If a signal is received by srun while the job is executing (for example, a
SIGINT resulting from a Control-C), it is sent to each slurmd which terminates
the individual tasks and reports this to the job status manager, which cleans
up the job.

9

2 Controller Design
The controller will be modular and multi-threaded. Independent read and write
locks will be provided for the various data structures for scalability. The con-
troller state will be saved to disk immediately upon change for fault tolerance.
The controller will include the following subsystems:

Partition management: Monitor and record the state of each node in the
cluster. Group these nodes into disjoint sets called partitions with various
job l i i t s and access controls. The partition manager also allocates nodes
to jobs based upon node and partition states and configurations.

Job management: Accept, initiate, monitor, delete and otherwise manage
the state of all jobs in the system. This includes prioritizing pending work.

Switch management: Perform any interconnect-related monitoring and
control needed to run a parallel job.

Each of these subsystems is described in detail below.

2.1 Partition Management
The partition manager will monitor the state of nodes and allocate these re-
sources to jobs selected by the Job Manager. Node information that we intend
to monitor includes:

Count of processors on the node

Size of real memory on the node

Size of temporary disk storage

State of node (RUN, IDLE, DRAINED, etc.)

Weight (preference in being allocated work)

Feature (arbitrary description)

Ip address

The SLURM administrator could at a minimum specify a list of system node
names using a regular expression (e.g. ” NodeName=linux[OOl-512] CPUs=4
RealMemory=lO24 TmpDisk=4096 Weight=4 Feature=Lmux”). These values
for CPUs, RealMemory, and TmpDisk would be considered the minimal node
configuration values which are acceptable for the node to enter into service. The
slurmd will register whatever resources actually exist on the node and this will
be recorded by the Partition Manager. Resources will be checked on slurmd
initialization and periodically thereafter. If a node registers with less resources
than configured, it will be placed in DOWN state and the event will be logged.
Otherwise the actual resources reported will be used as a basis for scheduling

10

(e.g. if the node has more RealMemory than recorded in the configuration
file). Note the regular expression node name syntax permits even very large
heterogeneous clusters to be described in only a few lines. In fact, a smaller
number of unique configurations provides SLURM with greater efficiency in
scheduling work.

The weight is used to order available nodes in assigning work to them. In
a heterogeneous cluster, more capable nodes (e.g. larger memory or faster pro-
cessors) should be assigned a larger weight. The units are arbitrary and should
reflect the relative value of that resource. Pending jobs will be assigned the least
capable nodes (Le. lowest weight) which satisfy their requirements. This will
tend to leave the more capable nodes available for those jobs requiring those
capabilities.

The feature is an arbitrary string describing the node, such as a particular
software package, file system, or processor speed. While the feature does not
have a numeric value, one might include a numeric value within the feature
name (e.g. ”12OOMHz” or ”16GBSwap”). If the nodes on the cluster have
disjoint features (e.g. different ”shared” file systems), one should identify these
as features (e.g. ”FSl”, ”FS2”, etc.). Programs may then specify that all
nodes allocated to it should have the same feature, but that any of the specified
features is accept able (e.g. ” Feature=FSl-FS2-FS3”) .

The partition manager will identify groups of nodes to be used for execution
of user jobs. Data to be associated with a partition will include:

w Name

w Access controlled by key granted to user root (to support external sched-

w List of associated nodes (may use regular expression)

ulers)

State of partition (UP or DOWN)

w Maximum time limit for any job

Maximum nodes allocated to any single job

0 List of groups permitted to use the partition (defaults to ALL)

Shared access (YES, NO, or FORCE)

Default partition (if not specified in job request)

It will be possible to alter most of this data in real-time in order to effect
the scheduling of pending jobs (currently executing jobs would continue). This
information can be confined to the SLURM control machine for better scalabil-
ity. It would be used by the Job Manager (and possibly an external scheduler),
which either exist only on the control machine or communicate only with the
control machine. An API to manage this information was developed first, fol-
lowed by simple command-line tools utilizing the API. APIs designed to return

11

SLURM state information will permit the specification of a timestamp. If the
requested data has not changed since the time-stamp provided by the applica-
tion, the application’s current information need not be updated. The API will
return a brief ”no-change” response rather than returning relatively verbose
state information.

The nodes in a partition may be designated for exclusive or non-exclusive
use by a job. A shared value of ”YES” indicates that jobs may share nodes upon
request. A shared value of ”NO” indicates that jobs are always given exclusive
use of allocated nodes. A shared value of ”FORCE” indicates that jobs will
never be insured exclusive access to nodes, but SLURM will initiate multiple
jobs on the nodes for high system utilization and responsiveness. In this case,
job requests for exclusive node access will not be honored. Non-exclusive access
may negatively impact the performance of parallel jobs or cause them to fail
upon exhausting shared resources (e.g. memory or disk space). However, shared
resources should improve overall system utilization and responsiveness. The
proper support of shared resources, including enforcement of limits on these
resources, entails a substantial amount effort which we are not planning to
address presently. However, we have designed SLURM so as to not preclude the
addition of such a capability at a later time if so desired. Fhture enhancements
could include constraining jobs to a specific CPU count or memory size within
a node, which could be used to space-share the node. The partition manager
will allocate nodes to pending jobs upon request by the job manager.

Bit maps are used to indicate which nodes are up, idle, associated with
each partition, and associated with each unique configuration. This technique
permits scheduling decisions to normally be made by performing a small number
of tests followed by fast bit map manipulations.

Submitted jobs can specify desired partition, CPU count, node count, task
count, task distribution pattern (round-robin or sequential within a node), the
need for contiguous nodes assignment, and (optionally) an explicit list of nodes.
Nodes will be selected so as to satisfy all job requirements. For example a
job requesting four CPUs and four nodes will actually be allocated eight CPUs
and four nodes in the case of all nodes having two CPUs each. The submitted
job may have an associated key, and by virtue of this can be granted access to
specific partitions. The request may also indicate node configuration constraints
such as minimum real memory or CPUs per node, required features, etc.

Nodes are selected for possible assignment to a job based upon it’s configu-
ration requirements (e.g. partition specification, minimum memory, temporary
disk space, features, node list, etc.). The selection is refined by determining
which nodes are up and available for use. Groups of nodes are then considered
in order of weight, with the nodes having the minimum resources to satisfy the
request preferred. Finally the physical location of the nodes is considered.

The actual selection of nodes for allocation to a job is currently tuned for the
Quadrics interconnect. This hardware supports hardware message broadcast,
but only if the nodes are contiguous. If a job is not allocated contiguous nodes, a
slower software based multi-case mechanism will be used. Job’s will be allocated
continuous nodes to the extent possible (in fact, contiguous node allocation can

12

be required by a job is so specified at submission time). If contiguous nodes
can not be allocated to a job, it will be allocated resources from the minimum
number of sets of contiguous nodes possible. If multiple sets of contiguous nodes
can be allocated to a job, the one which most closely fits the job’s requirements
will be used. This technique will leave the largest continuous sets of nodes intact
for jobs requiring them.

The partition manager will build a list of nodes to satisfy a job’s request,
including the distribution of tasks to nodes (recognizing the number of CPUs
on each node). It will also cache the IP addresses of each node and provide this
information to srun at job initiation time for improved performance.

The failure of any node to respond to the partition manager will only effect
jobs associated with that node. In fact, jobs may indicate they should continue
executing even if nodes allocated to it cease responding. In this case, the job
will need to provide for its own fault-tolerance. All other jobs and nodes in the
cluster will continue to operate after a node failure. No additional work will
be allocated to the failed node and it will be pinged periodically to determine
when it has been restored to serviced.

A sample configuration file follows.

Sample /etc/SLURM.conf
Author: John Doe
Date: 11/06/2001

ControlMachine=lxOOOI
BackupController=lxOOO2

Node Configurations

NodeName=DEFAULT TmpDisk=16384
NodeName=lx[0001-0002] State=DRAINED
NodeName=lx[0003-80001 CPUs=16 RealMemory=2048 Weight=l6
NodeName=lx[8001-9999] CPUs=32 RealMemory=4096 Weight=40 Feature=1200MHz

Partition Configurations

PartitionName=DEFAULT MaxTime=30 MaxNodes=2
PartitionName=login Nodes=1x[0001-0002] State=DOWN
PartitionName=debug Nodes=lx COOO3-00301 State=UP
PartitionName=class Nodes=1x[0031-0040] AllowGroups=students,teachers
PartitionName=batch Nodes=lx[0041-9999] MaxTime=UNLIMITED MaxNodes=4096 Key=YES

Don’t schedule work here
Def ault=YES

2.2 Job Manager
The core functions to be supported by the job manager include:

Queue job request

13

0 Reset priority of jobs (for external scheduler to order queue)

0 Reserve/allocate nodes for a future job

0 Initiate job

0 Will job run query (test if "Initiate job'' request would succeed)

0 Status job (including node list, memory and CPU use data)

0 Signal job (send arbitrary signal to all processes associated with a job)

0 Terminate job (remove all processes)

0 Preempt/resume job (future)

0 Checkpoint/restart job (future)

0 Change node count of running job (could fail if insuEcient resources are

We need more detail here. None of this has been even prototyped yet.
We propose that SLURM implement a very simple scheduling algorithm,

namely FIFO with backfill. Backfill scheduling means that a lower priority
job (Le. newer) can be scheduled before another job only if doing so does not
delay the expected initiation time of the higher priority job. Backfill scheduling
tends to improve both system utilization and responsiveness by initiating smaller
node count and shorter time limit jobs more rapidly. An attempt will be made
to schedule pending jobs on a periodic basis and whenever any change in job,
partition, or node state might permit the scheduling of a job. All nodes allocated
to a job will remain so until all processes associated with that job terminate. If a
node allocated to a job fails, the job may either continue execution or terminate
depending upon its configuration.

We are well aware this algorithm will not satisfy the needs of many customers
and provide the means for establishing other scheduling algorithms. Before a
newly arrived job is placed into the queue, it is assigned a priority that may
be established by an administrator defined program. SLURM APIs permit an
external entity to alter the priorities of jobs at any time to reorder the queue as
desired. The Maui Schedulera is one example of an external scheduler suitable
for use with SLURM.

Another scheduler that we plan to offer with SLURM is DPCS7. DPCS
has flexible scheduling algorithms that suit our needs well and provides the
scalability required for this application. Most of the resource accounting and
some of the job management functions presently within DPCS would be moved
into the proposed SLURM Job Management component. DPCS will require
some modification to operate within this new, richer environment. The DPCS
Central Manager requires porting to Linux.

available, future)

6http://mauischedde.sourceforge.net/
7http://www.lld.gov/icc/lc/dpcs/dpcs-overview.htd

14

The DPCS writes job accounting records to Unix files. Presently, these are
moved to a machine with the Sybase database. This data can be accessed via
command-line and web interfaces with Kerberos authentication and authoriza-
tion. We are not contemplating making this database software available through
SLURM, but might consider writing this data to an open source database if so
desired.

System specific scripts can be executed prior to the initiation of a user job
and after the termination of a user job (e.g. prolog and epilog). These scripts are
executed as user root and can be used to establish an appropriate environment
for the user (e.g. permit logins, disable logins, terminate "orphan" processes,
etc.). An API for all functions would be developed initially, followed by a
command-line tool utilizing the API.

The job manager will collect resource consumption information (CPU time
used, CPU time allocated, and real memory used) associated with a job from
the slurmd daemons. When a job approaches its time limit (as defined by wall-
clock execution time) or an imminent system shutdown has been scheduled,
the job will be terminated. The actual termination process is to notify slurmd
daemons on nodes allocated to the job of the termination request along with a
time period in which to complete the termination. The slurmd job termination
procedure, including job signaling, is described in the slrumd section.

If for some reason, there are non-killable processes associated with the job,
nodes associated with those processes will be drained and the other nodes re-
linquished for other uses.

2.3 Switch Manager
The switch manager would be responsible for allocating switch channels and
assigning them to user jobs. The switch channels would be de-allocated upon job
termination. The slurmd (on each compute node) would provide user jobs with
the authentication required for switch use as directed by the switch manager.
Switch health monitoring tools will also be implemented in phase two. It may be
desirable for the SLURM daemons to use the switch directly for communications,
particularly for the movement of a large executable and/or standard input file.
This option will be investigated in phase three.

2.4 Fault Tolerance
A backup slurmctld, if one is configured, will periodically ping the primary
slurmctld. Should the primary slurmctld cease responding, the backer will
load state information from the last slurmctld state save, and assume control.
All slurmd daemons will be notify of the new controller location and be re-
quested to upload current state information to it. When the primary slurmctld
is returned to service, it will tell the backup slurmctld to save state and ter-
minate. The primary will then load state, assume control, and notify slurmd
daemons.

15

SLURM utilities and the APIs will read the /etc/slrumd.conf files and ini-
tially try to contact the primary slurmctld. Should that attempt fail, an
attempt will be made to contact the backup slurmctld before terminating.

3 Slurmd
Slurmd is a multi-threaded daemon for managing user job and monitoring sys-
tem state. Upon initiation it will read the /etc/slurmd.conffile, capture system
state, and await requests from the SLURM control daemon (slurmctld).

It’s most common action will be to report system state upon request. Upon
slurmd startup and periodically thereafter, it will gather the processor count,
real memory size, and temporary disk space for the node. Should those values
change, the controller will be notified. Another thread will be created to capture
CPU, real-memory and virtual-memory consumption from the process table en-
tries. Differences in resource utilization values from process table snapshot to
snapshot will be accumulated. Slurmd will insure these accumulated values are
not decremented if resource consumption for a user happens to decrease from
snapshot to snapshot, which would simply reflect the termination of one or more
processes. Both the real and virtual memory high-water marks will be recorded
and the integral of memory consumption (eg. megabytehours). Resource con-
sumption will be grouped by user ID and SLURM job ID (if any). Data will
be collected for system users (root, ftp, ntp, etc.) as well as customer accounts.
The intent is to capture all resource use including kernel, idle and down time.
Upon request, the accumulated values will be uploaded to the controller and
cleared. When all processes associated with a SLURM job have terminated,
slurmd with notify the controller. Since multiple parallel job executions may
occur from within a single SLURM job, slurmd will not execute the epilog until
requested to do so by the controller upon termination of all processes associated
with the SLURM job.

Slurmd will accept requests from the SLURM control daemon to initiate
and terminate user jobs. The initiate job request will contain: real and effective
user IDS, environment variables, working directory, task numbers, Kerberos
credential (?), interconnect specifications and authorization, core paths, process
limits (?), SLURM job ID, command to execute, and it arguments. Slurmd
will execute the prolog script (if any), reset its session ID, and then initiate the
job as requested. It will record to disk the SLURM job ID, session ID, process
ID associated with each task, and user associated with the job. In the event of
slurmd failure, this information will be recovered from disk in order to identify a
specific job. This job identity will be used in communications with the SLURM
controller. We can get

The job termination request will contain the SLURM job ID and a delay this job reg-
period. Jobs will have an API made available to register with slurmd exactly istration and
which process(s) should be send what signals with how much lead time prior to signalling code
termination. Slurmd will send requested signal (or SIGNXCPU if none specified) from DPCS.
to the identified process(es) associated with the SLURM job (or all processes -MJ

16

associated with that session ID or process tree by default), sleep for the delay
specified, and send SIGKILL to all of the job’s processes. If the processes do not
terminate, SIGKILL will be sent again. If the processes still do not terminate
slurmd wiII notify the slurmctld, which will log the event and set node’s state
to DRAINED. After all processes terminate, slurmd will execute the epilog
program (if any).

4 Command Line Utilities
4.1 scancel
scancel will prematurely terminate a queued or running job. If the job is in
the queue, it will just be removed. If the job is running, it will be signaled and
terminated as described in the slurmd section of this document. It will identify
the job(s) to be terminated through input specification oE SLURM job ID or
user name. If no job specification is supplied, the user will be asked for one. If
the user name is supplied, all jobs associated with that user will be terminated.
scancel can only be executed by the job’s owner or user root.

4.2 scontrol
scontrol is a tool meant for SLURM administration by user root. It provides
the following capabilities:

0 Reconfigure - Cause slurmctld to reread its codguration file.

0 Show build parameters - Display the values of parameters that SLURM
was built with such as locations of files and values of timers. This can
either display the value of specific parameters or all parameters.

0 Show job state - Display the state information of a particular job or all
jobs in the system.

0 Show node state - Display the state and configuration information of a
particular node, a set of nodes (using regular expressions to identify their
names, or all nodes.

0 Show partition state - Display the state and configuration information of
a particular partition or all partitions.

Update job state - Update the state information of a particular job in the
system. Note that not all state information can be changed in this fashion
(eg. the nodes allocated to a job).

0 Update node state - Update the state of a particular node. Note that not
all state information can be changed in this fashion (e.g. the amount of
memory configured on a node). In some cases, you may need to mod-
ify the SLURM codguration file and cause it to be reread using the
” Reconfigure” command described above.

17

0 Update partition state - Update the state of a partition node. Note that
not all state information can be changed in this fashion (e.g. the default
partition). In some cases, you may need to modify the SLURM config-
uration file and cause it to be re-read using the "Reconfigure" command
described above.

4.3 squeue

squeue will report the state of SLURM jobs. It can filter these jobs input
specification of job state (RUN, PENDING, etc.), job ID, user name, and job
name. If no specification is supplied, the state of all jobs will be reported.

squeue can also report the state of SLURM partitions and nodes. By default,
it will report a summary of partition state with node counts and a summary of
the configuration of those nodes (e.g. "PartitionName=batch Nodes=k[1000-
99991 RealMemory=2048-4096 IdleNodes=1234 ...'I).

4.4 srun
Mark, this i s for you

5 Infrastructure: Communications Library
Optimal communications performance will depend upon hierarchical communi-
cations patterned after DPCS and GangLL work. The SLURM control machine
will generate a list of nodes for each communication. The message will then be
sent to one of the nodes. The daemon on that node receiving the message will
divide the node list into two or more new lists of similar size and retransmit the
message to one node on each list. Figure 3 shows the communications for a fan-
out of two. Acknowledgments will optionally be sent for the messages to co&m
receipt with a third message to commit the action. Our design permits the con-
trol machine to delegate one or more compute machine daemons as responsible
for fault-tolerance, collection of acknowledgment messages, and the commit de-
cision. This design minimizes the control machine overhead for performance
reasons. This design also offers excellent scalability and fault tolerance.8

8Arguments to the communications request include:
Request ID
Request (command or acknowledgment or commit)
List of nodes to be effected
Fan-OUt (Count)

0 Commit of request to be required (Yes or No or Delegate node receiving message)
Acknowledgment requested to node (name of node or NULL)
Acknowledgment requested to port (number)

18

Msg to 1,2,3,4,5,6 Msg to 7,8,9,10,11,12

/ \Msg to 5 6 / \

Figure 3: Sample communications with fanout = 2

Security wil l be provided by the use of reserved ports, which must be opened
by root-level processes. SLURM daemons will open these ports and all user
requests will be processed through those daemons.

5.1 Infrastructure: Other
The state of slurmctld will be written periodically to disk for fault tolerance.
Daemons will be initiated via inittab using the respawn option to insure their
continuous execution. If the control machine itself becomes inoperative, its
functions can easily be moved in an automated fashion to another computer.
In fact, the computer designated as alternative control machine can easily be
relocated as the workload on the compute nodes changes. The communications
library design is very important in providing this flexibility.

A single machine will serve as a centralized cluster manager and database.
We do not anticipate user applications executing on this machine.

The syslog tools will be used for logging purposes and take advantage of the
severity level parameter.

19

6 Development Plan
The design calls for a four-phase development process. Phase one will develop
infrastructure: the communications layer, node status information collection
and management. There will be no development of a scheduler in phase one.

Phase two will provide basic job management functionality: basic job and
partition management plus simple scheduling, but without use of an intercon-
nect.

Phase three will add Quadrics Elan3 switch support and overall documen-
tation.

Phase four rounds out SLURM with job accounting, fault-tolerance, and full
integration with DPCS (Distributed Production Control System).

20

A Glossary
DCE Distributed Computing Environment

DFS Distributed File System (part of DCE)

DPCS Distributed Production Control System, a meta-batch system and re-
source manager developed by LLNL

GangLL Gang Scheduling version of LoadLeveler, a joint development project
with IBM and LLNL

Globus Grid scheduling infrastructure

Kerberos Authentication mechanism

LoadLeveler IBM’s parallel job management system

LLNL Lawrence Livermore National Laboratory

NQS Network Queuing System (a batch system)

OSCAR Open Source Cluster Application Resource

21

References
[l] Moe Jette et al. Survey of batch/resource management-related system soft-

ware. Technical report, LLNL, 2002.

22

